
SOCEMO: Surrogate Optimization of
Computationally Expensive Multi-Objective Problems

Code Manual

Juliane Müller
juliane.mueller2901@gmail.com

Center for Computational Science and Engineering
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Abstract

SOCEMO is an optimization algorithm for solving computationally expensive,
black-box, multi-objective optimization problems. SOCEMO uses various surrogate
models to approximate the computationally expensive objective functions. Hence,
derivative information, which is generally unavailable for black-box simulation ob-
jective functions, is not needed. SOCEMO aims at solving problems that have
continuous variables whose upper and lower bounds are known. Other constraints,
such as computationally expensive black-box constraints or computationally cheap
equality or inequality constraints cannot be handled by this version, but extensions
of the algorithm to these problem classes are underway. This code manual describes
the MATLAB code and how you can use SOCEMO to solve your multi-objective
optimization problems.

1 Introduction

This documentation accompanies the MATLAB implementation of the algorithm
SOCEMO (Surrogate Optimization of Computationally Expensive Multi-Objective prob-
lems). We implemented and tested SOCEMO in MATLAB 2012a [1] (for toolbox require-
ments, see below). SOCEMO is a derivative-free surrogate model algorithm that aims at
solving multi-objective optimization problems:

min
x∈Rd

[f1(x), f2(x), . . . , fk(x)]T (1a)

−∞ < xlj ≤ xj ≤ xuj <∞, j = 1, . . . , d (1b)

where f(x) = [f1(x), f2(x), . . . , fk(x)]T : Rd 7→ Rk, k ≥ 2, is the vector of objective
functions (objective vector) that must be minimized simultaneously. We assume that the
objective functions are deterministic, i.e., the function values are identical for identical
input variable vectors x. The variables xj ∈ R, j = 1, . . . , d, are bounded from below
and above by xlj and xuj , respectively. d is the problem dimension, and k is the number
of objectives with k ≥ 2. The optimization problem has the following characteristics:

1

• The objective functions are computationally expensive to compute. Evaluating all
k objective functions is extremely time consuming and takes several minutes to
hours. In SOCEMO, we assume that for every evaluation point x, we compute all
k objective function values.

• The objective functions are black boxes. Analytical descriptions of the functions
are not available as it is the case, for example, when computer simulations are used
when computing the objective function values. All k objective function values may
be computed by the same black box simulation, or they may be the output of several
simulations.

• Derivatives of fi(x), i = 1, . . . , k, are not available.

• The objective functions are deterministic. The value of fi(x) is identical for identical
inputs.

• The objective function is (most likely) multimodal. The domain scientists may
have some idea of whether or not there are several basins of attraction. For black-
box problems, it is not possible to tell a priori what the shape of the objective
function landscape is, and in order to avoid becoming trapped in a local minimum,
we assume that all fi(x) are multimodal, and thus we use a global search strategy
in the optimization.

• The objective functions are conflicting, i.e., improving one objective will worsen at
least one other.

In multi-objective optimization, there is in general no single solution that optimizes
all objectives. Rather, the goal is to find trade-off (Pareto-optimal, non-dominated)
solutions. Since a single function evaluation is computationally extremely expensive,
we want to do only very few evaluations of f(x) in order to keep the optimization time
acceptable. If all objective functions are computationally inexpensive (fractions of a
second), SOCEMO will not be an efficient solver. We developed SOCEMO for problems
whose function evaluation time does not allow us to do tens of thousands of evaluations.

In this code companion, we focus mostly on explaining the functionalities of the individ-
ual m-function and how to use SOCEMO for solving your multi-objective optimization
problems. We recommend reading the paper “SOCEMO: Surrogate Optimization of
Computationally Expensive Multi-Objective Problems” by J. Müller (2017, to appear in
INFORMS Journal on Computing), for further explanations and references. Please cite
this paper if you use SOCEMO in your work.

Required MATLAB version and toolboxes: MATLAB 2012(a) and newer (implemented
and tested in 2012(a)); Optimization toolbox; Global optimization toolbox; Statistics
toolbox.

Make sure that the SOCEMO code directory is known to the MATLAB search path. To
test the algorithm, type in the MATLAB command window

testdriver

2

This runs a computationally cheap test problem and should finish successfully. Please
note that SOCEMO solves several optimization subproblems when making iterative
sampling decisions and thus this test run may take some 45-60 seconds to complete.
However, compared to the computational cost of doing an actual simulation evaluation,
we deem this overhead acceptable.

We organized this code manual as follows. Section 2 is a brief overview of how surrogate
model algorithms work in general and radial basis functions (RBFs). The individual
m-functions of the algorithm are described in Section 3. The output of the algorithm is
described in Section 4. An example of how to define your own optimization problem and
how to call the algorithm is given in Section 5. Section 6 shows the code structure for
reference in case you are looking for specific function dependencies.

Should you encounter difficulties or bugs, please feel free to contact me at

juliane.mueller2901@gmail.com

Lastly, if you are interested in single-objective mixed-integer or continuous optimization
of computationally expensive black-box problems, please feel free to browse through my
website https://ccse.lbl.gov/people/julianem/index.html.

2 Surrogate Model Algorithm and Radial Basis

Functions

Algorithm 1 gives a high-level overview of the steps in SOCEMO and Figure 1 illustrates
the steps on a single objective function with one variable.

Algorithm 1 Overview of the Algorithm SOCEMO

1: Create an initial experimental design and do the k expensive objective function eval-
uations at each point in the initial design. Fit k surrogate models, one for each
objective.

2: Use the information from the surrogate models to select the point xnew at which we
do the next expensive function evaluations. Do the expensive evaluations at xnew:
fi,new = fi(xnew), i = 1, . . . , k.

3: Update the k surrogate models and go to Step 2.
4: Stop when the stopping criterion is satisfied and return the non-dominated points

found.

First, we create an initial experimental design and evaluate the computationally expensive
objective functions at the selected points. Note that we need all k function values for
every evaluation point. In general, any initial design strategy may be used, but it has
to be ensured that there are sufficiently many points to compute the parameters of the
surrogate models. The objective function value predictions of the surrogate models at
unsampled points are used when selecting the next evaluation points. After the expensive
function values have been computed at the newly selected points, the surrogate models
are updated if the stopping criterion has not been satisfied (for example, the budget of

3

mailto:juliane.mueller2901@gmail.com
https://ccse.lbl.gov/people/julianem/index.html

function evaluations has not been exhausted) and a new point is selected for evaluation.
Otherwise, the algorithm stops and returns the best non-dominated (Pareto-optimal)
solutions found so far. As in single-objective black-box global optimization, we cannot
guarantee that the returned solutions actually are the true Pareto-optimal solutions
(due to the objective functions being black-box and the number of allowed function
evaluations being generally too low to guarantee global convergence). However, for
practical applications where the evaluation time of the objective functions restricts the
number of evaluations that can be done, our approach of using derivative-free efficient
surrogate-based sampling has been shown superior over other derivative-free methods
such as genetic algorithms which generally need thousands of function evaluations to
reach solutions that are close to those found by our surrogate model strategy.

Figure 1: Illustration of the surrogate model algorithm steps described in Algorithm 1
for a one-dimensional problem and for a single objective.

SOCEMO uses radial basis function (RBF) surrogate models, in particular cubic RBF’s
(although the user can optionally use a linear or thin-plate spline RBF as well). The RBF
interpolant is defined as

s(x) =
n∑
ι=1

λιφ(‖x− xι‖) + p(x), (2)

where φ(·) is the radial basis function (types defined in Table 1), xι, ι = 1, . . . , n, denotes
the points at which the objective function value is known (already evaluated points), and
p(·) denotes the polynomial tail whose minimal order (Table 1) depends on the chosen
RBF type (we use linear polynomial tails for all RBF types in our implementation). The
parameters λι ∈ R, ι = 1, . . . , n, and the parameters of the polynomial tail β0, β1, . . . βd ∈
R are determined by solving the following linear system of equations[

Φ P
PT 0

] [
λ
β

]
=

[
F
0

]
, (3)

where Φιν = φ(‖xι − xν‖), ι, ν = 1, . . . , n, 0 is a matrix with all entries 0 of appropriate
dimension, and

P =


xT1 1
xT2 1
...

...
xTn 1

 , λ =


λ1
λ2
...
λn

 β =


β1
β2
...
βd
β0

 , F =


fi(x1)
fi(x2)

...
fi(xn)

 . (4)

4

The entries of F in the right hand side of the equation are the function values of the ith
objective function at the sampled points. Thus, we compute a separate set of parameters
λ and β for each objective by using the function values from each objective as F. The
matrix in (3) is invertible if and only if rank(P) = d+ 1 [3].

Table 1: Radial basis function types and their corresponding minimal degree µp of p(x).
In the SOCEMO implementation, we use a linear polynomial tail for each kind of radial

basis function type.

Name φ(r) = µρ

Linear r 0
Cubic r3 1
Thin plate spline r2 log r 1

3 Description of Individual m-functions

3.1 socemo.m

3.1.1 socemo.m inputs

The main function from which to run the algorithm is socemo.m. socemo.m takes three (3)
input arguments shown in Table 2.

socemo(datafile, maxeval, setrandseed)

Table 2: Parameter inputs for socemo.m.

Input # Name Description

1 datafile string, mandatory, name of the file containing the user’s problem
definition

2 maxeval integer, mandatory, maximum number of allowed function evalua-
tions; must be larger than dimension + 1

3 setrandseed integer, mandatory, seed for random number generator

The first input argument (datafile), is a string with the name of the m-file in which your
optimization problem is defined. We recommend using one of the examples that come
with SOCEMO as template for writing your own datafile. The datafile must have as
output argument a structure array Data (function call: Data = your filename). In the
datafile, all relevant problem information must be defined. We need the lower bounds
(Data.xlow) and upper bounds (Data.xup) for each variable. You must define the problem
dimension (Data.dim), the number of objective functions (Data.nr obj), and the function
handle for the objective functions (Data.objfunction). For example,

5

Data.xlow = [-4, -4];
Data.xup = [4, 4];
Data.dim = 2;
Data.nr obj = 2
Data.objfunction = @(x) function handle(x).

The objective function must be defined such that the input variable vector x is a row
vector and it must return a row vector of k =Data.nr obj objective function values, i.e.,
each variable input vector within the variable lower and upper bounds must be evaluable
and every objective function value has to be in R \ {∞,−∞}.

The input maxeval has to be an integer number. It defines the maximum number
of allowable function evaluations (note that one function evaluation means that we
get all k objective function values). In order to fit an RBF model, we need at
least d + 1 function evaluations, and therefore maxeval has to be larger than d + 1.
The number of allowable function evaluations depends on the user’s time constraint
and the computation time needed to get all k function values for one sample point.
The algorithm stops after the maximum number of function evaluations has been reached.

The last input argument, setrandseed, sets the random number seed. Since the algorithm
has a stochastic component when generating sample points, we can use the random num-
ber seed to do a re-run of the algorithm with the exact same random numbers. If you
want to run the algorithm for the same problem more than once with different random
numbers, simply use a different random number seed for each run.

3.1.2 socemo.m algorithm steps

socemo.m does the optimization search over the unit hypercube and rescales evaluation
points to their true ranges for function evaluations. Hence, SOCEMO starts by setting
the search space size to the unit hypercube. SOCEMO then generates an initial
symmetric Latin hypercube design (slhd.m) with n start=2(Data.dim+1) initial points.
We check if the rank condition for matrix P in equation (4) is satisfied. If the condition
is not satisfied, we add randomly generated points from the search domain to the initial
design until the condition is satisfied. We then do the expensive function evaluations at
the initial points.

Next, SOCEMO finds the set of strictly non-dominated solutions among the already
evaluated points. We need at least k such solutions (since we will later fit a piecewise
linear approximation function to the Pareto front). If we do not have sufficiently many
linearly independent non-dominated solutions, we use MATLAB’s multi-objective genetic
algorithm to solve a surrogate problem in which we minimize the surrogate models of all
objectives simultaneously:

min
x∈Rd

[s1(x), s2(x), . . . , sk(x)]T (5a)

−∞ < xlj ≤ xj ≤ xuj <∞, j = 1, . . . , d (5b)

6

SOCEMO then uses a variety of sampling methods to generate new points at which we
evaluate the expensive objective functions. We cycle through five sample point selection
strategies until we have exhausted the budget of allowable function evaluations. In sam-
pling strategy 1, we generate a surrogate approximation of the current Pareto front. On
this Pareto front, we find the point τ = [τ1, τ2, . . . , τk]

T that maximizes the minimum
distance to all other current Pareto front points. This point defines a target value for
each objective function. We find the point x in the parameter space that solves the
multi-objective auxiliary optimization problem

min
x∈Rd

[|s1(x)− τ1|, |s2(x)− τ2|, . . . , |sk(x)− τk|]T (6a)

−∞ < xlj ≤ xj ≤ xuj <∞, j = 1, . . . , d. (6b)

If this problem does not have a unique solution, we choose as solution
arg minx∈G

∑k
i=1 |si(x)− τi|, where G is the solution set of (6).

The second sampling strategy is based on adding random perturbations to the currently
non-dominated sample points. We use as scoring criterion a weighted sum of function
value predictions by the surrogate models and the distance of the perturbed points to
already evaluated points.
The third sampling strategy is based on finding the minimum of each objective function’s
surrogate model. Thus, in this step we may generate up to k new sample points. This
sampling strategy enables us to examine the extrema of the Pareto front.
In sampling strategy 4, we randomly generate points from the whole parameter domain
and we use the same scoring criteria as in strategy 2 in order to select a new evaluation
point.
Sampling strategy 5 uses MATLAB’s multi-objective genetic algorithm to solve the multi-
objective surrogate problem (5). We evaluate the expensive objective functions only at a
subset of the Pareto solutions of the surrogate problem.
In between sampling strategies and whenever we do expensive evaluations, we update our
set of currently non-dominated sample points and their function values. After the budget
of function evaluations (maxeval) is exhausted, SOCEMO saves all problem and sample
information as a data structure Data in results.mat.

3.2 slhd.m

slhd.m selects n start points as initial experimental design by generating a symmetric Latin
hypercube design [4]. The input parameter is the structure array Data that contains the
information about how many starting points are needed and what the problem dimension
is. The output is a matrix with d (dimension) columns and n start rows.

3.3 find targetvalues.m

find targetvalues.m computes target values τ for all objective functions. The function uses
a piecewise linear approximation of the Pareto front as a constraint on which it searches
for a vector τ that maximizes the minimum distance to all other points that are currently
on the Pareto front. The goal is to find a new sample point in the variable domain that
assumes these target values and thus closes gaps on the current Pareto front.

7

3.4 rbf minus tv.m

rbf minus tv.m uses the target values computed by find targetvalues.m and searches for
the point x in the parameter space that assumes these target values. We solve the multi-
objective surrogate problem (6) with MATLAB’s multi-objective genetic algorithm, where
si is the cubic RBF approximation of fi. Ideally, the objectives are not conflicting, and we
find one point that minimizes all objectives simultaneously. If this is not the case (and we
find several trade-off solutions), we choose as new sample point the point that minimizes
the sum of the individual objective functions of (6). Note that in rbf minus tv.m, we
call MATLAB’s gamultiobj.m function, and we adjust the number of generations and the
population size. Both numbers can be increased to possibly improve the solution quality
of (6), but this comes at a cost of computational overhead of the optimizer.

3.5 pert sampling.m

pert sampling.m generates new evaluation points by adding random perturbations to the
currently non-dominated points. We generate 500 randomly perturbed points in the vicin-
ity of each non-dominated point. We score the “quality” of the random points by pre-
dicting their objective function values with the surrogate models and by computing their
distances to already evaluated points. Both criteria are weighted in compute scores mo.m
and the points with the best scores are selected for evaluation with the expensive objec-
tives.

3.6 compute scores mo.m

compute scores mo.m computes for every candidate sample point (which was created by
the perturbation method pert sampling.m) a weighted sum of two criteria, namely the
predicted objective function values and the distance to already evaluated points. We
scale the objective function values for each objective to [0,1] and use the mean over all
objectives for each candidate as first criterion. We also scale the distance values to [0,1] to
obtain the second criterion. We give a higher weight (and therefore a higher importance)
to the objective function value criterion.

3.7 solve surr problem.m

solve surr problem.m solves a multi-objective auxiliary problem in which we simultane-
ously minimize the surrogate approximations of the objective functions (see equations (5)).
Since evaluating the surrogate models is computationally inexpensive, we use again MAT-
LAB’s multi-objective genetic algorithm. Similar to rbf minus tv.m, one may adjust the
population and generation numbers in order to possibly improve the solution quality (at
a cost of computational overhead).

3.8 maximindist decispace.m

maximindist decispace.m finds a new sample point by maximizing the minimum distance
to all already evaluated points.

8

3.9 check distance.m

check distance.m computes the distance of every point in a new set of potential sample
points to the set of already evaluated points. Any new point that is closer than a given
tolerance to the set of already evaluated points will be discarded and not considered for
evaluation with the expensive functions.

3.10 fix rank surr.m

fix rank surr.m is used when we do not have sufficiently many non-dominated points to
fit a surrogate surface for the Pareto front. In order to approximate the Pareto front, we
require that

rank



f1(x̃1) f2(x̃1) . . . fk−1(x̃1) 1
f1(x̃2) f2(x̃2) . . . fk−1(x̃2) 1

...
...

. . .
...

f1(x̃P) f2(x̃P) . . . fk−1(x̃P) 1


 = k, (7)

where x̃1, . . . , x̃P are the points in the set of non-dominated solutions. In order to increase
this set and to satisfy the rank condition, we use MATLAB’s multi-objective genetic
algorithm and solve the surrogate problem (5).

3.11 check dominance.m and check dominance2.m

check dominance.m finds the non-dominated points within a single set of points.
check dominance2.m finds the non-dominated points from two separate point sets. Both
functions keep solutions that have the exact same function values.

3.12 check strict dominance.m and check strict dominance2.m

check strict dominance.m finds the strictly non-dominated points within a single set of
points. check strict dominance2.m finds the strictly non-dominated points from two sepa-
rate point sets. Both functions discard points that have the exact same function values.

3.13 rbf params mo.m

rbf params mo.m computes the RBF parameters for all objective functions.

3.14 rbf prediction mo.m

rbf prediction mo.m predicts for a sample point all objective function values using the RBF
surrogate models.

3.15 rbf prediction.m

rbf prediction.m predicts for a sample point one objective function value at a time using
the RBF surrogate model. This function is needed when we sample by using the minimum
point of each RBF surrogate surface.

9

3.16 rbf matrices.m

rbf matrices.m assembles the matrices needed for solving the linear system (3).

3.17 rbfvalue.m

rbfvalue.m computes the value φ(r) (for the cubic RBF, φ(r) = r3). See Table 1 for other
options.

3.18 datainput mop1.m, datainput mop2.m, datainput mop3.m

datainput mop1.m, datainput mop2.m, and datainput mop3.m are example datainput files.
A datainput file is mandatory for socemo.m. Use one of these examples as template for
defining your own problem. See Section 3.1.1 for further details.

3.19 pareto plot.m

pareto plot.m can be used to plot the Pareto front for problems that have two or three
objective functions. This function can optionally be called from the command line after
socemo.m has finished and the file results.mat has been generated.

3.20 testdriver.m

testdriver.m can be run directly from the command line. It solves a test problem and plots
the Pareto front.

4 SOCEMO Output

socemo.m generates a file, results.mat that contains the complete sample history, the final
non-dominated points, and all problem information supplied by the user. In order to
access the data, type

load results.mat

into the command prompt in MATLAB (make sure that the results.mat file is located in
a directory known to the MATLAB search path). A structure array Data will appear in
the workspace. The fields of Data are described in Table 3.

10

Table 3: Fields of the structure array Data.

Field name Description

dim Scalar, problem dimension (d)
xlow Vector, variable lower bounds (xlj, j = 1, . . . , d)
xup Vector, variable upper bounds (xuj , j = 1, . . . , d)
nr obj Scalar, number of objective functions (k)
objfunction Objective function handle
lb Vector of zeros, sampling decisions are made in unit hypercube
ub Vector of ones, sampling decisions are made in unit hypercube
maxeval Maximum number of allowed function evaluations (1 evaluation = all k

objective function values)
tol same Scalar, distance tolerance below which two points are considered equal
m Scalar, number of function evaluations done
S Matrix (m × dim) with evaluated points
Y Matrix (m × nr obj) with objective function values
S nondom Matrix (P× dim) with P non-dominated points
Y nondom Matrix (P× nr obj) with function values of non-dominated points
S for tv Matrix with strictly non-dominated points (submatrix of S nondom)
Y for tv Matrix with function values of strictly non-dominated points (submatrix

of Y nondom)
totaltime Total time needed for optimization

5 Example

In this section, we show an example of how to define an optimization problem and use
socemo.m to solve it. You must provide a data file (see Section 3.1.1 for the details).
The data file contains all information about the optimization problem. SOCEMO comes
with three test functions (datainput mop1.m, datainput mop2.m, datainput mop3.m). We
recommend using one of these files as template for defining your own problem. Sec-
tion 3.1.1 shows the mandatory problem specifications that must be given for all problems.

When defining the objective function, you have to include the command

global sampledata

This global variable collects the sample points and their corresponding function values.
sampledata is a matrix with m rows and dim + nr obj columns that gets dynamically
increased whenever we evaluate a new point. Define your problem such that the output
of your objective function definition is a row vector y. Last, collect the new data in the
global variable sampledata by using the command

sampledata = [sampledata; x(:)’, y];

Your data input file should look similar to the code shown in Figure 2.

11

Figure 2: Example input datafile for the Poloni [2] test function.

12

In order to use socemo.m to solve your problem, you must know how many function
evaluations (maxeval) you want to allow (here, one function evaluation corresponds to
evaluating all objective functions at one point) and you must give your random number
seed (setrandseed). Let’s assume we want to solve the Poloni problem in Figure 2, we
allow 200 function evaluations, and we use the random seed 1. That means, from the
command line, we call

socemo(’datainput mop3’, 200,1)

After the algorithm has finished, you will find the file results.mat in the current MATLAB
directory (see Section 4 for details of the results file). If you have only two or three
objective functions, you can plot the Pareto front by typing into the command window:

load results.mat;
pareto plot(Data);

For the above example, the Pareto front is shown in Figure 3.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

Objective 1

O
b

je
c
ti
v
e
 2

Pareto front

Figure 3: Pareto front obtained by SOCEMO for the Poloni [2] test function.

6 SOCEMO Code Structure

We outline the code structure here. Functions in subtrees indicate that they are called
by a higher level function.

socemo.m

slhd.m

check distance.m

check dominance.m

check strict dominance.m

fix rank surr.m

rbf params mo.m

check dominance.m

check distance.m

check strict dominance.m

check strict dominance2.m

find targetvalues.m

13

rbf minus tv.m

rbf params mo.m

rbf params mo.m

pert sampling.m

compute scores mo.m

rbf prediction mo.m

check dominance2.m

rbf matrices.m

rbfvalue.m

rbf prediciton.m

maximindist decispace.m

solve surr problem.m

References

[1] MATLAB. MATLAB R2012a. The MathWorks Inc., Natick, Massachusetts, 2012.

[2] C. Poloni. HYBRID GA for multi-objective aerodynamic shape optimization. In
G. Winter, J. Periaux, M. Galan, and P. Cuesta, editors, Genetic Algorithms in En-
gineering and Computer Science, pages 397–416. Wiley & Sons Chichester, UK, 1995.

[3] M.J.D. Powell. The Theory of Radial Basis Function Approximation in 1990. Ad-
vances in Numerical Analysis, vol. 2: wavelets, subdivision algorithms and radial
basis functions. Oxford University Press, Oxford, pp. 105-210, 1992.

[4] K.Q. Ye, W. Li, and A. Sudjianto. Algorithmic construction of optimal symmetric
Latin hypercube designs. Journal of Statistical Planning and Inference, 90:145–159,
2000.

14

	Introduction
	Surrogate Model Algorithm and Radial Basis Functions
	Description of Individual m-functions
	socemo.m
	socemo.m inputs
	socemo.m algorithm steps

	slhd.m
	find_targetvalues.m
	rbf_minus_tv.m
	pert_sampling.m
	compute_scores_mo.m
	solve_surr_problem.m
	maximindist_decispace.m
	check_distance.m
	fix_rank_surr.m
	check_dominance.m and check_dominance2.m
	check_strict_dominance.m and check_strict_dominance2.m
	rbf_params_mo.m
	rbf_prediction_mo.m
	rbf_prediction.m
	rbf_matrices.m
	rbfvalue.m
	datainput_mop1.m, datainput_mop2.m, datainput_mop3.m
	pareto_plot.m
	testdriver.m

	SOCEMO Output
	Example
	SOCEMO Code Structure

